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Abstract Visual inspection of the histogram leads to a satisfactory
estimate of these three parameters in this illustration.

Three quality metrics commonly measured in theHowever, this is not always the case, and the object of the
microdensitometric analysis of halftone images are theurrent work was to develop improved methods for
halftone dot area fraction, F, the mean reflectance of thieistogram analysis as part of a study of the optical and
paper between the halftone dots,, Rand the mean physical behavior of digital halftones produced by non-
reflectance of the dots, .RThese metrics are commonly impact printing devices.
measured from the histogram of the image captured through R
microscope optics. However, local variations (noise) in the P‘
image, the physical spread of the edges of halftone dots, and
the scatter of light in the image often lead to difficulties in
estimating R R, and F from the histogram. In order to H(R) R
improve histogram analysis of the microstructure and image
quality of halftone images, a model for the behavior of
histogram curves has been developed. This model can be fit |
to the experimental histograms by a minimum RMS % 0.2 0.4 0.6 0.8 1
deviation in order to estimate, R, and F and other quality
metrics of the histogram image.
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. Figure 1: Histogram of 65 LPI AM halftone printed by offset
Introduction lithography, measured at 5 mm field of view (FOV)

The quality of printed halftone images is governed in large Histogram Characteristics
part by the spatial distribution of gray levels within the
halftone structure. Both the lateral distribution of ink andNominally, image histograms carry no spatial information.
the optical scattering of light in the printed paper contributéThey are only probability density functions for the
to a phenomenon often called "dot gain" in which theoccurrence of reflectance levels in the image, regardless of
halftone image absorbs more light than anticipated for ahere in the image the gray level occurs. However, by
perfect bi-modal image of ink or no-ink. These effects carknowing a priori that the image represents a halftone, we
be characterized quantitatively with image microdensitocan relate properties of the histogram to spatial properties of
metery in which a digital image of the halftone pattern ighe halftone. The simplest example is the use of the
captured through microscope optics and subjected to variotisreshold value of Ras illustrated in Figure 1, to estimate
types of image analysis. Three particularly useful metricshe area coverage of the halftone dots, F. If the halftone dots
extracted from this kind of analysis are the reflectange, Rwere perfectly formed, then the histogram would be truly bi-
of the ink dots, the reflectance,, Rf the paper between the modal, with a delta function of area F and another of area 1-
dots, and the halftone dot area fraction, F. These measuréd for the ink and paper area fractions, respectively.
metrics add up to the mean reflectance of the overalowever, due both to noise and to the spread or blurring of
halftone imageas R=F R (1 - F) 3.1 the halftone dots, the populations aroundaRd R are

The values of R R, and F can be estimated by spread out. Rrepresents the reflectance at the boundary
analyzing the histogram of the image captured through thieetween dot and paper, defined as the point of steepest slope
microscope. The histogram is a plot of the frequency obetween the dot and the paper, as illustrated schematically
occurrence of gray levels of reflectance€OR < 1) as a in Figure 2.
function of the value of R. Figure 1 illustrates a typical
histogram from a microdensitometry image of a 65 LPIR
halftone (AM clustered dot) printed by a traditional offset
lithography. The microdensitometry image covered a field N ) R )
of view of 5 mm, and the histogram clearly shows two gray h\ J AT N .
level populations; one for the ink and one for the paper
between the dots. Figure 1 also clearly illustrates how the Position, x in mm
values of R R, and F are estimated from the histogram.  Fjgure 2: lllustration of a line scan across halftone dots.
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Well formed halftone dots such as those represented ix = 1). The value of "a" is an index of the steepness of the
Figure 1 are not always observed. Rather, histograms suellge of the dot and is proportional to the slope of the curve
as those shown in Figures 3 and 4, representing ink jet errbalfway between Rmin and Rmax. The b term represents the
diffusion images at 300 dpi at approximately F = 0.5 and Hateral position of the curve such that the mid point between
= 0.1 are quite common. While one might still segment thd&kmin and Rmax occurs at a value of x = b. The values of
histogram of Figure 3 repeatably, one has less confidence Rmax, Rmin, b, and a in the model may be used as objective
the physical significance of the results, and Figure 4 offers astimates of R R, F, and the sharpness of the edge of the
serious problem in selecting an objective and repeatabldots. For a real, two dimensional R(x,y) halftone dot this
value of R Nevertheless, if one observes the image of thequivalent edge is not the same as an actual scan of the edge
halftone dots corresponding to the histograms in Figures 8f a dot. However, this one dimensional equivalent edge
and 4, halftone dots are easily observed and it is easy provides a basis for modeling the shape of the halftone
both cases to see the boundary between dot and paper. Thistogram as follows.
is a not uncommon problem with histogram segmentation.

The eye is an excellent detector of boundaries. 1 |
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Figure 3. Histograms at 5mm FOV of error diffusion dot pattern X

printed by thermal ink jet at 300 dpi at a nominal F = 0.5.
: : : : Figure 5: The edge modeled by equation (1) with Rmin = 0.3,
Rmax =0.7,a=10,and b = 0.5.

The histogram represents the frequency of occurrence
— — of a given value of R. This frequency is inversely
proportional to the slope of the R versus x curve. Slopes of
H(R) zero have a high occurrence, for example, and the mid-point
of the dot where the slope is highest has the lowest
B T frequency of occurrence. Thus, the histogram of a halftone
dot should be represented by equation (2).
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Figure 4. Histograms at 5mm FOV of error diffusion dot pattern
printed by thermal ink jet at 300 dpi at a nominal F = 0.05.

Figure 6 illustrates the histogram corresponding to
equation (2) for the curve of Figure 5.

R max- R min . 0.01 I
R= + Rmin (1)
1+ exr{— a(x- b)]

Modeling the Bimodal Histogram 1 - _
In order to improve histogram analysis and (dR/x)
segmentation to estimate the, R, and F parameters, a
model of histogram behavior for bi-modal images was
developed. The basis of the histogram is a description of the

edge trace of the dot, such as shown in Figure 2. The edge 0
model chosen was a simple, symmetrical sigmoidal 0 0.5 1
functiorf shown in equation (1) and illustrated in Figure 5 R

for Rmin = 0.3, Rmax = 0.7, a = 10, and b = 0.5. This
represents an average, one dimensional, equivalent edgigure 6: The histogram modeled by equation (2) for the edge in
from the middle of the paper (x = 0) to the middle of a dofFigure (5).
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The curve in Figure 6 looks only somewhat like anhistogram function, one can generate a one dimensional
experimental histogram. In order to further model the'equivalent edge" for the image. The ersatz spatial
behavior of actual, experimental histograms one has tdimension, X, is defined in units of area fraction, 0 < x < 1,
recognize that there is a variation among halftone dots as follows.
well as a variation, or granularity, in the paper reflectance. R L
This noise effect can be added to the model by defining an
average noise metric, S(x), as a gaussian probability density X(R) :IH(R) / I H(R) (4)
function. 0 0

1 (R-0520
(R = —=—expi——— 3
( ) o lz_n_exp[l 20.2 E ( )

The functions H and S were convolved by taking the |
Fourier transform of the functions, multiplying, and then the
inverse Fourier transform. As an example, the histogram of HR)
Figure 6 was convolved with equation (3)a@t= 0.02 in
units of R. The result is illustrated in Figure 7 and looks
much more like an experimental histogram.

0.01 R
Figure 8: The data of Figure 3 fit to the model with parameters
Rmin = 0.266, Rmax = 0.496, a = 11.0, and b = 0.53.
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Figure 7: The histogram of Figure 6 with noise added by equation B n
(3) ato=0.02 in units of R.
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Application of the Model

Figures 8 and 9 illustrate the use of this histogram modekigure 9: The data of Figure 4 fit to the model with parameters
Both show the histogram data of Figures 3 and 4 as dots amghin = 0.243, Rmax = 0.442, a = 8.4, and b = 0.999.
the model as a solid line. The fit represents a minimum
RMS deviation between the line and the data, and both
examples show a reasonably close agreement between data
an model. Thus, statistically fitting the model to the data
does provide a repeatable and objective method for
estimating the parameterg-RRmax, R= Rmin, and b = F.
However, inspection of the results for Figure 8 show a
somewhat surprising result. The value of Rmax which best
fits the data is significantly higher than any actual R 0.5
reflectance in the image. Moreover, the estimated fit value
of b is essentially unity. The reason can be seen in Figure 10 _,__..--f""
for the equivalent edge which produced the modeled
histogram. The results illustrate that Rmax and Rmin are not
the same as the mean valugsaRd R. In addition b is not 0 '
exactly equivalent to F. Thus, while the model provides a 0 05 1
good fit to the data, some independent definitions for the X
mean values of these quality metrics must be definegiy e 10: The edge modeled by equation (2) for the minimum
carefully in order to interpret the results of the model fit.  {Ms deviation fit in Figure 9.

An alternative application to histogram analysis is to
apply this model in reverse. By integrating the experimental
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Figure 11 illustrates the calculation of the equivalent

edge for the halftone image represented by the histogram in
Figure 3. It should be noted that spatial information is
somewhat confused in this analysis, and the slope of the
equivalent edge trace in Figure 11 is in part a function of the
random noise in the original image as well as the physical
sharpness of the actual dot edges. Nevertheless, calculation
of this equivalent edge does provide an objective evaluation
of the edge quality averaged over the entire halftone image.
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